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1 Properties of Shannon Entropy

1.1 Motivation and intuition

Recall that the Shannon entropy of p is

H(p) = −
∑
x∈X

p(x) log(p(x)).

Here is a slogan to help you understand H(p). H(α) is the canonical way to measure how
“uncertain” α is.

Imagine an experiment modeled using (Ω,F ,P).

• Let Ω = E ∪ Ec, where P(E) = P(Ec) = 1/2. Here we have “1 bit of information”
about the outcome.

• Let Ω = E1∪ · · ·∪E2m , where P(Ei) = 2−m. So Ei tells you “m bits of information.”

• Localize: if P(E) = 2−m, then E conveys m bits of information.

• For all E ⊆ Ω, if P(E) = 0, we can interpolate to say the “information content” is
− log2(P(E)).

We want to use natural logarithms, so instead of measuring information in “bits,”
we measure it in “nats.”1

• α : Ω → X partitions Ω = {α = x}, x ∈ X . The expected information conveyed by
α is

∑
x∈X P(α = x)[− logP(α = x)]

Lemma 1.1. H(α) ≥ 0 with equality if and only if p = δx for some x ∈ X .

Proof. −x log(x) (with the convention that −0 log 0 = limx→0[−x log x] = 0) is greater
than 0 for x ∈ (0, 1).

Remark 1.1. H(α) is really a property of the partition Ω =
⋃
x{α = x}.

1This word actually shows up in engineering textbooks.
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1.2 Chain rule and conditional entropy

Suppose α, β are X ,Y-valued respectively. Then we can regard (α, β) as a single X × Y-
valued random variable (also denoted sometimes by α ∧ β).

Lemma 1.2 (chain rule). H(α, β) = H(α) +H(β | α), where

H(β | α) =
∑
x∈X

P(α = x)HP(·|{α=x})(β) =
∑
x∈X

p(x)H(qx)

is the conditional entropy of β given α. Here, p is the distribution of α, and qx(y) =
P(β = y | α = x).

Proof. Let r(x, y) = P(α = x, β = y). Then

H(α, β) = −
∑
(x,y)

r(x, y) log(r(x, y))

= −
∑
x

∑
y

p(x)qx(y) log(p(x)qx(y))

= −
∑
x

p(x) log(p(x))
∑
y

qx(y)︸ ︷︷ ︸
=1

−
∑
x

p(x)

(∑
y

qx(y) log(qx(y))

)
.

Lemma 1.3 (relative chain rule). Let α, β, ξ be random variables.

H(α, β | ξ) = H(α | ξ) +H(β | α, ξ).

Proof. Apply the chain rule with P(· | {ξ = z}). Take a weighted average.

Lemma 1.4 (full chain rule). Let α1, . . . , αn, ξ be random variables.

H(α1, . . . , αn | ξ) = H(α1 | ξ) +H(α2 | α1, ξ) + · · ·+H(αn | α1, . . . , αn−1, ξ)

Proof. Induction on n.

1.3 Inequalities and mutual information

Lemma 1.5. H(α, β) ≥ H(α), with equality if and only if there exists ϕ : X → Y such
that β = ϕ(α) a.s.

Proof. By the chain rule, H(α, β)−H(α) =
∑

x p(x)H(qx). This is 0 if and only if whenever
p(x) > 0, we have qx = δϕ(x) for some ϕ(x) ∈ Y.

Corollary 1.1. IF β = ϕ(α) a.s., then H(β) ≤ H(α), and H(β | ξ) ≤ H(α | ξ).
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Proof. H(α) = H(α, β) ≥ H(β).

Proposition 1.1. H(α) ≥ H(α | β), with equality if and only if α, β are independent.

Remark 1.2. This says that conditioning reduces uncertainty. Similarly, H(α | ξ) ≥
H(α | β, ξ).

Lemma 1.6. Fix X and consider H : P (X ) → [0,∞). H is continuous and strictly
concave.

Proof. H(p) = −
∑

x p(x) log(p(x)). Now apply known facts for each x.

Proof. The law of total probability says that

q(y) = P(β = y) =
∑
x∈X

P({β = y} ∩ {α = x}) =
∑
x

p(x)qx(y).

So by Jensen’s inequality,

H(β) = H(q) = H(
∑
x

p(x)qx) ≥
∑
x

p(x)H(qx) = H(β | α),

with equality if and only if qx = q whenever p(x) > 0; i.e. α, β are independent.

Lemma 1.7. Given X , H(p) ≤ log |X | with equality if and only if p(x) = 1/|X | for all
x ∈ X .

Definition 1.1. The mutual information between α and β is I(α;β) = H(α)−H(α |
β) = H(α+H(β)−H(α, β).

The second formula follows from the first by the chain rule. Rearranging this, we get

H(α) = H(β | α) + U(α, β).

Let α, β both be X -valued.

Lemma 1.8 (Fano’s inequality). Let p = P(α 6= β) be the “probability of error.” Then

H(α)−H(β) ≤ H(α | β) ≤ H(p, 1− p) + p log(|X | − 1),

where p, 1− p is a distribution on {0, 1} with probability p, 1− p.
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