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1 Properties of Shannon Entropy

1.1 Motivation and intuition
Recall that the Shannon entropy of p is
H(p) = - p(x)log(p(x)).
zeX

Here is a slogan to help you understand H(p). H(«) is the canonical way to measure how
“uncertain” « is.
Imagine an experiment modeled using (2, F, P).

o Let Q = FU E°, where P(F) = P(E°) = 1/2. Here we have “1 bit of information”
about the outcome.

e Let Q = E1U---UEom, where P(E;) = 27™. So E; tells you “m bits of information.”
e Localize: if P(E) =27, then E conveys m bits of information.

e For all E C Q, if P(F) = 0, we can interpolate to say the “information content” is
—logy(P(E)).
We want to use natural logarithms, so instead of measuring information in “bits,”
we measure it in “nats.”!

o a: ) — X partitions Q = {a = z}, x € X. The expected information conveyed by
ais ) cyPla=x)[-logP(a=2x)]
Lemma 1.1. H(a) > 0 with equality if and only if p = 0, for some x € X.

Proof. —xlog(x) (with the convention that —0log0 = lim, ,o[—zlogz] = 0) is greater
than 0 for € (0,1). O

Remark 1.1. H(a) is really a property of the partition Q = J,{a = z}.

'This word actually shows up in engineering textbooks.



1.2 Chain rule and conditional entropy

Suppose «, 5 are X, Y-valued respectively. Then we can regard (o, 3) as a single X' x Y-
valued random variable (also denoted sometimes by o A ).

Lemma 1.2 (chain rule). H(a, ) = H(a) + H(B | o), where

H(B|a) =Y Pla=z)Hpjamep(B) = > plx)H

zeX zeEX

is the conditional entropy of [ given «. Here, p is the distribution of o, and q,(y) =
PB=y|la=2).

Proof. Let r(x,y) = P(ao =z, = y). Then

H(o, B) = — Z r(z,y) log(r(z,y))
(z.y)

=—ZZP )4 (y) log(p(2)qx(y))
:_Zp( log ZQJE Zp (ZQJC log Qx ))) O

1

Lemma 1.3 (relative chain rule). Let «, 3,& be random variables.
H(e,p1€) = H(a|§) + H(B | a,).
Proof. Apply the chain rule with P(- | {£ = z}). Take a weighted average. O

Lemma 1.4 (full chain rule). Let oy, ..., a,,§ be random variables.
H(ai,...,oan | €)= H(ar | §) + H(az | a1,8) + -+ H(an | o1, ..., an-1,)

Proof. Induction on n. O

1.3 Inequalities and mutual information

Lemma 1.5. H(«,8) > H(«), with equality if and only if there exists ¢ : X — Y such
that 8 = ¢(«) a.s

Proof. By the chain rule, H (o, 8)—H(a) = ), p(x)H (q). This is 0 if and only if whenever
p(z) > 0, we have g, = () for some p(z) € V. O

Corollary 1.1. IF 8 = p(a) a.s., then H(B) < H(a), and H(B | &) < H(a | §).



Proof. H(a) = H(a, 8) > H(B). =
Proposition 1.1. H(«a) > H(« | ), with equality if and only if «, 5 are independent.

Remark 1.2. This says that conditioning reduces uncertainty. Similarly, H(a | &) >
H(a | B,8).

Lemma 1.6. Fiz X and consider H : P(X) — [0,00). H is continuous and strictly
concave.

Proof. H(p) = =), p(x)log(p(x)). Now apply known facts for each x. O

Proof. The law of total probability says that

gy) =PB=y) =Y PUB=y}n{a=1}) = p(x)ey).

reX

So by Jensen’s inequality,
H(B)=H(q) = H() p(x)q,) > Y ple)H(q) = HB | o),

with equality if and only if g, = ¢ whenever p(z) > 0; i.e. a, § are independent. O

Lemma 1.7. Given X, H(p) < log|X| with equality if and only if p(x) = 1/|X| for all
reX.

Definition 1.1. The mutual information between « and jis I(«; 8) = H(a) — H(« |
8) = H(a+ H(fB) — H(e, B).

The second formula follows from the first by the chain rule. Rearranging this, we get
H(a) = H(B | ) +U(e, §).
Let «, 8 both be X-valued.
Lemma 1.8 (Fano’s inequality). Let p = P(a # ) be the “probability of error.” Then
H(a) - H(B) < H(a| B) < H(p,1 —p) + plog(|X| - 1),

where p,1 — p is a distribution on {0, 1} with probability p,1 — p.



	Properties of Shannon Entropy
	Motivation and intuition
	Chain rule and conditional entropy
	Inequalities and mutual information


