Math 254B Lecture 3 Notes

Daniel Raban

April 5, 2019

1 Properties of Shannon Entropy

1.1 Motivation and intuition

Recall that the Shannon entropy of p is

$$H(p) = -\sum_{x \in \mathcal{X}} p(x) \log(p(x)).$$

Here is a slogan to help you understand H(p). $H(\alpha)$ is the canonical way to measure how "uncertain" α is.

Imagine an experiment modeled using $(\Omega, \mathcal{F}, \mathbb{P})$.

- Let $\Omega = E \cup E^c$, where $\mathbb{P}(E) = \mathbb{P}(E^c) = 1/2$. Here we have "1 bit of information" about the outcome.
- Let $\Omega = E_1 \cup \cdots \cup E_{2^m}$, where $\mathbb{P}(E_i) = 2^{-m}$. So E_i tells you "m bits of information."
- Localize: if $\mathbb{P}(E) = 2^{-m}$, then E conveys m bits of information.
- For all $E \subseteq \Omega$, if $\mathbb{P}(E) = 0$, we can interpolate to say the "information content" is $-\log_2(\mathbb{P}(E))$.

We want to use natural logarithms, so instead of measuring information in "bits," we measure it in "nats." 1

• $\alpha : \Omega \to \mathcal{X}$ partitions $\Omega = \{\alpha = x\}, x \in \mathcal{X}$. The expected information conveyed by α is $\sum_{x \in \mathcal{X}} \mathbb{P}(\alpha = x)[-\log \mathbb{P}(\alpha = x)]$

Lemma 1.1. $H(\alpha) \ge 0$ with equality if and only if $p = \delta_x$ for some $x \in \mathcal{X}$.

Proof. $-x \log(x)$ (with the convention that $-0 \log 0 = \lim_{x \to 0} [-x \log x] = 0$) is greater than 0 for $x \in (0, 1)$.

Remark 1.1. $H(\alpha)$ is really a property of the partition $\Omega = \bigcup_{x} \{\alpha = x\}$.

¹This word actually shows up in engineering textbooks.

1.2 Chain rule and conditional entropy

Suppose α, β are \mathcal{X}, \mathcal{Y} -valued respectively. Then we can regard (α, β) as a single $\mathcal{X} \times \mathcal{Y}$ -valued random variable (also denoted sometimes by $\alpha \wedge \beta$).

Lemma 1.2 (chain rule). $H(\alpha, \beta) = H(\alpha) + H(\beta \mid \alpha)$, where

$$H(\beta \mid \alpha) = \sum_{x \in \mathcal{X}} \mathbb{P}(\alpha = x) H_{\mathbb{P}(\cdot \mid \{\alpha = x\})}(\beta) = \sum_{x \in \mathcal{X}} p(x) H(q_x)$$

is the conditional entropy of β given α . Here, p is the distribution of α , and $q_x(y) = \mathbb{P}(\beta = y \mid \alpha = x)$.

Proof. Let $r(x, y) = \mathbb{P}(\alpha = x, \beta = y)$. Then

$$H(\alpha,\beta) = -\sum_{(x,y)} r(x,y) \log(r(x,y))$$

= $-\sum_{x} \sum_{y} p(x)q_x(y) \log(p(x)q_x(y))$
= $-\sum_{x} p(x) \log(p(x)) \sum_{y} q_x(y) - \sum_{x} p(x) \left(\sum_{y} q_x(y) \log(q_x(y))\right).$

Lemma 1.3 (relative chain rule). Let α, β, ξ be random variables.

$$H(\alpha, \beta \mid \xi) = H(\alpha \mid \xi) + H(\beta \mid \alpha, \xi).$$

Proof. Apply the chain rule with $\mathbb{P}(\cdot \mid \{\xi = z\})$. Take a weighted average.

Lemma 1.4 (full chain rule). Let $\alpha_1, \ldots, \alpha_n, \xi$ be random variables.

$$H(\alpha_1,\ldots,\alpha_n \mid \xi) = H(\alpha_1 \mid \xi) + H(\alpha_2 \mid \alpha_1,\xi) + \cdots + H(\alpha_n \mid \alpha_1,\ldots,\alpha_{n-1},\xi)$$

Proof. Induction on n.

1.3 Inequalities and mutual information

Lemma 1.5. $H(\alpha, \beta) \geq H(\alpha)$, with equality if and only if there exists $\varphi : \mathcal{X} \to \mathcal{Y}$ such that $\beta = \varphi(\alpha)$ a.s.

Proof. By the chain rule, $H(\alpha, \beta) - H(\alpha) = \sum_{x} p(x)H(q_x)$. This is 0 if and only if whenever p(x) > 0, we have $q_x = \delta_{\varphi(x)}$ for some $\varphi(x) \in \mathcal{Y}$.

Corollary 1.1. IF $\beta = \varphi(\alpha)$ a.s., then $H(\beta) \leq H(\alpha)$, and $H(\beta \mid \xi) \leq H(\alpha \mid \xi)$.

Proof. $H(\alpha) = H(\alpha, \beta) \ge H(\beta)$.

Proposition 1.1. $H(\alpha) \ge H(\alpha \mid \beta)$, with equality if and only if α, β are independent.

Remark 1.2. This says that conditioning reduces uncertainty. Similarly, $H(\alpha \mid \xi) \geq 1$ $H(\alpha \mid \beta, \xi).$

Lemma 1.6. Fix \mathcal{X} and consider $H : P(\mathcal{X}) \to [0,\infty)$. H is continuous and strictly concave.

Proof. $H(p) = -\sum_{x} p(x) \log(p(x))$. Now apply known facts for each x.

Proof. The law of total probability says that

$$q(y) = \mathbb{P}(\beta = y) = \sum_{x \in \mathcal{X}} \mathbb{P}(\{\beta = y\} \cap \{\alpha = x\}) = \sum_{x} p(x)q_x(y).$$

So by Jensen's inequality,

$$H(\beta) = H(q) = H(\sum_{x} p(x)q_x) \ge \sum_{x} p(x)H(q_x) = H(\beta \mid \alpha),$$

with equality if and only if $q_x = q$ whenever p(x) > 0; i.e. α, β are independent.

Lemma 1.7. Given \mathcal{X} , $H(p) \leq \log |\mathcal{X}|$ with equality if and only if $p(x) = 1/|\mathcal{X}|$ for all $x \in \mathcal{X}$.

Definition 1.1. The mutual information between α and β is $I(\alpha; \beta) = H(\alpha) - H(\alpha \mid \beta)$ $\beta) = H(\alpha + H(\beta) - H(\alpha, \beta).$

The second formula follows from the first by the chain rule. Rearranging this, we get

$$H(\alpha) = H(\beta \mid \alpha) + U(\alpha, \beta).$$

Let α, β both be \mathcal{X} -valued.

Lemma 1.8 (Fano's inequality). Let $p = \mathbb{P}(\alpha \neq \beta)$ be the "probability of error." Then

$$H(\alpha) - H(\beta) \le H(\alpha \mid \beta) \le H(p, 1-p) + p \log(|\mathcal{X}| - 1),$$

where p, 1-p is a distribution on $\{0,1\}$ with probability p, 1-p.